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An Iterative Finite Element Method for 
Approximating the Biharmonic Equation 

By P. B. Monk* 

Abstract. A mixed finite element method for the biharmonic model of the simply 
supported and clamped plate is analyzed and error estimates are obtained. We show 
that the discrete problem may be solved efficiently by using the conjugate gradient 
method and a sequence of Dirichlet problems for Poisson's equation. 

1. Introduction. Let Q be a smooth bounded domain in R2. Denote by r the 
boundary of Q, by v the unit outward normal to r, by s the unit tangent to r, and 
by ic the curvature of r. Finally, let r be a constant with 1/2 < r < 1, and let f, gl 
and 92 be given functions. This paper will concern approximating the solution W 
of the biharmonic equation 

(1.1) A\2W = f in Q 

subject to either simply supported boundary conditions 

W = 9 
(1.2) (Wi W +_2W_ onr 

or clamped plate boundary conditions 

W = gi) 
(1.3) _W 9 

onF. 

In the remainder of this paper we will refer to (1.1) with boundary conditions (1.2) 
as the simply supported plate problem, and refer to (1.1) with (1.3) as the clamped 
plate problem. These names reflect the fact that these boundary value problems are 
simple models for a thin plate under different support conditions on the boundary 
of the plate. 

The direct discretization of the biharmonic equation usually involves the con- 
struction of finite element subspaces of Ho (u) n H2 (Q) (cf. [4], [9]). However, by 
adopting the mixed method approach, we can reformulate the biharmonic equation 
as a system of lower-order equations. In particular, if we introduce the variable 
v=-L\W, we may rewrite (1.1) to obtain 

(1.4) = } in U. 
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This system, together with the boundary conditions 
W = 9A 

(1.5) -W &2W on F, v = -rcOv &2 / 1 92 

is equivalent to the simply supported plate problem, while (1.4) and (1.3) are 
equivalent to the clamped plate problem. To discretize (1.4) we need only consider 
subspaces of Ho (Q) and H1 (Q). 

For the clamped plate problem, (1.4) and (1.3) have been used by Ciarlet and 
Raviart [11] to formulate a mixed finite element method when Q is polygonal. In 
[15], Glowinski and Pironneau suggest a rearrangement of the discrete problem 
arising from the Ciarlet-Raviart method and solve the problem iteratively by a 
sequence of discrete Poisson problems. Following Glowinski and Pironneau, we 
shall further rewrite the plate problems to obtain a formulation suitable for iterative 
solution. 

Let us define solution operators G and T for the Dirichlet problem for Poisson's 
equation as follows. Given a function A defined on F, define GA to be the function 
such that 

-L\GA = O in Q. 

GA = A on F, 
and given f defined on Q, define Tf to be such that 

(1.7) -ATf = f in 
Q, 

Tf =0 onF. 
Now define the pair of functions (u(A), v(A)) by 

(1.8) v(A) = Tf-GA, u(A) =Tv + Ggi. 

Clearly, (u, v) solves Eq. (1.4) (take W = u and v = v) together with the boundary 
condition u = g, and v = -A on F. Using (u, v) we can reformulate the simply 
supported plate problem as an equation for A (i.e., for AW on F). We seek the 
function A such that 

(1.9) A =T ( &u(A) + 92 u(A) +92- 

In the same way, the clamped plate problem becomes the problem of finding A such 
that 

(1.10) au(A) = 92. 
&V 

The plate problems have now been reduced to problems involving the function A 
supported on the boundary. Once we have found A, the respective boundary value 
problems are solved. We can find u and v via (1.8) and make the identification 
W = u and -zW = v. 

There is one remaining difficulty: au/l9v is difficult to approximate using discrete 
Dirichlet problems. Instead we obtain variational problems equivalent to (1.9) and 
(1.10) by multiplying the equations by a smooth function 0, integrating over F, and 
using Green's formula. The simply supported plate problem is then equivalent to 
finding A such that 

(1.1) (A, b) +T(v(A),G(sO)) = T(VGgi,VG(0k)) +r(goi., b + (g2,q) 
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for every X E C?'(r). Here (., ) represents the L2 inner product on r, and (., ) 
represents the L2 inner product on U. Later it will prove useful to write (1.11) as 
an operator equation, so we define the operator M acting on functions on r by 

(1.12) MA = A + ri 
T 
Di' 

Again, using G and Green's theorem as in the derivation of (1.11), we find that if 
A is smooth enough, 

(1.13) (MA, (A,q$) -T (GA, GC(, )) V0 E C'(r), 

and thus we may write (1.11) as MA = F88 where F88 is the function such that 

(F88, I) = r(-(Tf, G(ico)) + (V~g1,VG(,_0)) + (91gs 0)) + (92X g ) 

for every X E C' (r). 
In the same way, the clamped plate problem (1.10) is equivalent to finding A 

such that 

(1.14) (v(A), GO) = (V~g1, VGq) -(92,q$) 

for every X E CO' (r). Again, it will prove useful to cast this as an operator equation. 
We define the operator A acting on functions on r by 

(1.15) AA - &TGA 

this operator satisfies 

(1.16) (AASIP) = (GAqGO) VO E C`?(r). 

Thus (1.14) is equivalent to the equation AA = FC where FC satisfies 

(FCq$) = (TfCGo) - (VGgl,VVGq) + (92g, ) Vq5 E aC(r)- 

At this stage we can easily obtain a finite element discretization of either bound- 
ary value problem for the biharmonic equation. Let Sk and SjB be suitable finite 
element subspaces on r, let Gh and Th be discrete operators approximating G and 
T, and let [gi]I E Shj be a particular interpolant of g9 on r (to be detailed in 
Section 2). Then the finite-dimensional simply supported plate problem is to find 

Ak E Sk such that 

(1.17) (Ak, Ok) + T(Vh(Ak), Gh('Ok)) = T(VGh[91]I, VGh(I~k)) 

+T(918s,0k) + (92, bk) VOk E Sk, 

where 

(1.18) Vh(Ak) = Thf - GhAk, Uh(Ak) = ThVh(Ak) + Gh[gl]I. 

Similarly, we can discretize the clamped plate problem by seeking Ak E Sk such 
that 

(1.19) (Vh(Ak),CGhk) = (VGh[g1]I, VGhk) - (92, 00) V8k E Sk- 

Let us discuss the relationship of our method to other methods for approximating 
the biharmonic problem. Much work has been devoted to using finite element 
methods to compute an approximation to the displacement W in the clamped 
plate problem using variational principles based directly on (1.1). A review of the 
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literature on displacement finite element methods, as well as a detailed presentation 
of the theory, can be found in [9]. As pointed out previously, displacement methods 
require the construction of subspaces of H2(Q), which results in complex finite 
element spaces. To avoid this problem, a number of investigators have tried to 
write (1.1) as a system of lower-order equations by introducing auxiliary variables. 
The mixed methods that result can then be discretized more easily by methods 
appropriate for lower-order problems. 

Since the literature on the clamped plate problem is more extensive than on 
the simply supported plate problem, we shall discuss mixed finite element methods 
for the clamped plate problem first. The Herrmann-Johnson method [16], [17] and 
Hermann-Miyoshi method [16], [18] both use as auxiliary variables the vector of 
second partial derivatives of W. These methods differ in that they use different 
variational principles to construct the discrete problem, but both methods produce 
approximations to the displacement W and the moments 92W/&9ixj directly. An 
alternative method, which we have already mentioned in this introduction, is to use 
the single auxiliary variable -SW. This approach yields a smaller discrete problem 
than either the Herrmann-Johnson or Herrmann-Miyoshi method. The first analy- 
sis of a mixed finite element method based on adding -LW as the auxiliary variable 
was presented by Ciarlet and Raviart [11] for polygonal regions, and a unified anal- 
ysis of the Herrmann methods and the Ciarlet-Raviart method was given by Falk 
and Osborn [14]. For smooth domains, the Ciarlet-Raviart method has been ana- 
lyzed in [19]. Computational aspects of the Ciarlet-Raviart method are discussed in 
[10] and [15]. In the latter paper, Glowinski and Pironneau show how to rearrange 
the discrete problem arising from the Ciarlet-Raviart method and solve the prob- 
lem by computing an approximation to -LW on r. If an iterative method is used, 
the biharmonic problem is reduced to solving a sequence of Dirichlet problems for 
Poisson's equation. However, the conditioning of the problem becomes worse as 
the mesh is refined, and so Glowinski and Pironneau suggest a preconditioner to 
speed convergence. Another iterative mixed method for the clamped plate problem 
using a sequence of Neumann problems for Poisson's equation to approximate W 
and -LW has been proposed by Falk [13]. 

Our method for the clamped plate problem, which is not the main focus of our 
paper, is motivated by [11] and [15], but differs from previous methods mentioned 
above in that we explicitly discretize -AW on r using a space of functions on F. 
The introduction of this space allows us to prove estimates for the approximation 
of -AW on r (in applications to fluid flow problems -LW is the vorticity) and to 
give conditions under which the preconditioner suggested in [15] is effective. We are 
also able to suggest a new preconditioner that may be more effective if the boundary 
mesh is nonuniform. Compared to the method of Falk [13], the advantage of our 
method is that we only approximate one function on r, whereas Falk must use two 
functions, thus increasing the dimension of the discrete problem. 

Mixed methods for the simply supported plate problem, which are the main 
focus of this paper, have received less attention than methods for the clamped 
plate problem. On a polygonal domain the problem is simple (since 'c = 0), how- 
ever on a smooth domain some care is necessary. Babuska [3] has shown that no 
convergent approximation may be found if the curved boundary is replaced by a 
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polygonal boundary (since again ar = 0 on the polygon). Thus methods for the sim- 
ply supported plate problem must deal carefully with a curved boundary. Bramble 
and Falk [7] have investigated two mixed methods for the simply supported plate 
problem. Their most general method is based on (1.4) and (1.5), using Neumann 
problems for Poisson's equation as the underlying problem. As a result, they must 
use two unknown functions on r and precondition the iteration in a complex way. 
Bramble and Falk's second method, which is much simpler than the first, is limited 
to the case when to is positive. In [19], a method similar to the Ciarlet-Raviart 
method for the clamped plate problem, but based on Bramble and Falk's second 
method is analyzed. This method is also restricted to the case of positive ic. 

The main focus of our paper is the simply supported plate problem, and the 
method we propose is a new method for this problem. Our method for the simply 
supported plate problem using Dirichlet problems for Poisson's equation is simpler 
than the general Bramble-Falk method discussed above, since our method involves 
only one unknown function on r and no preconditioning is necessary. Furthermore, 
compared to Bramble and Falk's second method, our method is not restricted to 
positive i,. 

An outline of the paper is as follows. In the remainder of the introduction we 
shall define some notation. In Section 2 we will collect some results concerning 
the finite element spaces used in this paper and define the operators Gh and Th 

via Scott's method [22]. Then we will give some approximation properties of these 
operators. In Section 3 we will investigate the operator M defined by (1.12) and the 
finite element analogue of this operator. In Section 4 we will derive error estimates 
for the method for the simply supported plate problem given by (1.17). Section 
5 starts our analysis of the convergence properties of the method given by (1.19) 
for approximating the clamped plate problem. We analyze the operator A defined 
by (1.15), and then extend these results to a discrete analogue of this operator. In 
Section 6 we derive error estimates for the clamped plate problem. Our analysis of 
both the simply supported and clamped plate problems is based on the analysis of 
Lagrange multiplier methods due to Bramble [6], Bramble and Falk [7], and Falk 
[13]. Finally, in Section 7 we discuss the numerical implementation of the methods 
described above and show how both the clamped plate problem and the simply 
supported plate problem may be solved by the conjugate gradient algorithm. 

Now let us define some notation. Let S be a Lipschitz bounded open set in Rf2 
with boundary OR, and let T be a C' curve in the plane. Then H8(S) and H8(T) 
denote the usual Sobolev spaces of functions on S and T, respectively. Let 11 * Ils,s 

denote the norm on H8 (S) and IS ,T denote the norm on H8 (T). We will also 
write L2(S) = HO(S). If S = Q or T = F, we will omit the specification of the 
domain as a subscript in the norms and inner products. Recall that if s > 0 and if 
s is an integer, then 

1/2 

Hullss= { E IIDOuISI 4 
kIaJs 
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where we use the standard notation a = (i, j) for a vector of nonnegative integers, 
oal =i+j, and 

D= (X) f (80 )Y. 

If s < 0, then 

Hlulls's sup (u,q!)s 
?bEH-S(S) 11011s, 

The norm I IS T is defined in the same way. We shall also need to consider the 
spaces Cm(S) and Cm(T) of m times continuously differentiable functions on S 
and T, respectively. We shall denote by 11 im,oo,s and I mooT the norms on 
Cm (S) and Cm (T), respectively. If m is an integer and m > 0, then 

IIullm,oos = sup fDaul. 
xES,IcaI<m 

Here, ID'uI has its usual meaning as Euclidean length. Finally, we shall use the 
standard Sobolev spaces 

Ho(S) = {u E H'(S)ju = 0 on aS}, 

H02(S) = {u E H2(S)Iu = 0 and au/Dv = 0 on AS}. 
For a detailed discussion of Sobolev spaces the reader can consult [1]. 

2. Finite Element Spaces and the Dirichlet Problem for Poisson's 
Equation. We start by describing Scott's method [22] for constructing Sh. This 
begins by dividing ?2 into a collection rh of closed subdomains of maximum diameter 
h. The elements of Th are of two types. In the interior of Q, the elements are 
triangles, while at the boundary the elements have two straight sides (in ?) and a 
third possibly curved edge consisting of a segment of r. These latter elements will 
be referred to as boundary elements. 

We assume that the triangulation Th satisfies the usual finite element geometric 
restrictions [9]. In addition, we require the triangulation to be regular, by which 
we mean that the ratio of the radii r, and r2 of the circumscribed and inscribed 
circles of each element is bounded. That is, there is a constant K independent of 
h such that 

r- <K 
r2 

for each element in Th and each h. (For a boundary element, the inscribed circle is 
the largest circle contained in that element and in the triangle formed by joining its 
boundary vertices by a straight line.) We also assume that Sh satisfies an inverse 
assumption, that is, there is a constant K independent of h such that 

h 
< K 

r2 

for each triangle in 1h, and each h > 0. We shall discuss where this assumption is 
used after we define discrete solution operators for Laplace's equation at the end 
of this section. 

Having defined rh, we define Sh C H' (?) to be the set of all continuous piecewise 
(r - 1)-degree polynomials on 1h (of course, r > 1). Since we are interested in 
approximating the Dirichlet problem for Laplace's equation, we must also define a 
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subspace of H' (Q) that corresponds in a suitable sense to Ho (Q). We use Scott's 
definition [22], which proceeds by defining the degrees of freedom of Sh. For a 
triangular element with no edge on r, the degrees of freedom are the standard 
Lagrange degrees of freedom [9]. For a boundary element, denoted h, we use 
Lagrange degrees consisting of the function values at the vertices of 4h, at (r - 2) 
interpolation points uniformly spaced on each straight edge of h not on r, and at 
(r - 3) (r - 2)/2 points in the interior of the element chosen so that if a polynomial 
of degree r -4 vanishes at the points, it vanishes identically. Finally, the remaining 
(r - 2) interpolation points are positioned along the edge of h on r as follows. 
Choose a local coordinate system for the boundary element as shown in Figure 1. 

y 

?~ ~ ~ ~~~~~~Budr elmn ro 

0 X 

| rih C r, with arc length| 

F IGURE 1 

If h is small enough, 9i4 n ris the graph of a function p, 

(2.1) a f nlF = {(x, p(x)): o < x < xo}. 

We place the remaining (r - 2) interpolation points at (?lixo, p(rnxo)), i = 1,..., 
r - 2, where 0 < 7j' < 72 < ... < ?r-2 < 1 are the Lobatto quadrature points in 

(0, 1) (cf. [12], [23]). 
Using the degrees of freedom defined above, we define the space Sh by 

Sh = {Uh E Sh: Uh = 0 at interpolation points on r}. 

Notice that in general Sh is not a subspace of Ho (a). For a continuous function g, 
we define the set Sh, by 

Sh = {Uh E Sh: Uh = g at interpolation points on r}. 

We also need a space of functions on r associated with Sh, which we shall define 
next. The triangulation 1h of 1 induces a mesh Mh on r where every mesh point of 
Mh is a triangle vertex of rh, and every triangle vertex on r is a point in Mh. Then 
we define the boundary space ShB C H' (r) to be the space of continuous piecewise 
(r - 1)-degree polynomials in arc length on the mesh Mh. 
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Again the degrees of freedom of SjB must be chosen with care, and we use the 
degrees due to Blair [5]. Let [oi, a,+1] be a mesh interval on r; then any (r- 1)- 
degree polynomial on that interval is uniquely specified by the following degrees of 
freedom: 

1. The function value at vi and ai+i. 

2. The r -- 2 moments YnI n = 1,... , r - 2, on [ai, ai+i], where for a function v, 

1 f O+1 

Yn = kji+ -ailn+l J vo do. 

We may interpolate with these degrees of freedom, and we shall term this interpola- 
tion in the sense of Blair. Note that interpolation in the sense of Blair is equivalent 
to a local H1 norm projection on each subinterval on r, since if A, interpolates A 

on [i, oi+i], AI = A at ct and ai+i, and 

Oa+1 / Oa+1 

J A/I' do=] A',u'do V/1 E S, 

where prime denotes the derivative with respect to arc length. The following lemma, 

which can be found in [5], is proved using the above orthogonality property. 

LEMMA 2. 1. Let A E Hm (r) and let AI E S B interpolate A in the sense of 
Blair. Then for 1 < m < r and-r + 2 < s < 1l 

JA - A1l8 < Chm-81AIm. 

Finally, we need a space of functions on F in which to compute the unknown 

function Ak. We take Sk c Hr-3(r) to be the space of piecewise polynomials of 

degree less than r - 2 on F with r - 4 continuous derivatives. Note in particular, if 

r = 4, Sk is just a standard space of continuous piecewise linear polynomials on F. 

We assume that Sk is compatible with Sh, by which we mean that Sk C SjB. This 

implies that the mesh points of Sk are contained in Mh. We shall assume that the 

mesh for Sk is sufficiently regular so that the following estimates hold: 

1. If 0 E H'(F), and j < r -3 <1 <r - 2, there is a constant C3 such that 

inf 10q$-10 < Cjkl-'1X11. 
/IESk 

2. For j < i < r - 3 there is a constant C3 such that 

1l0i < Cjk3-illj Vq E Sk. 

From the results in [8], [6], we know that the above assumptions imply that there 

is an operator Irk: H30(F) -+ Sk such that, if jo < j < r -3 and j < 1 < r -2, 
there is a constant C30 with 

(2.2) 10 - Wk03 <?Cjo kl-lll 

Let us also denote by Po the L2(F) orthogonal projection operator onto Sk. Thus, 

for X E L2(F), POX E Sk satisfies 

(Po$, 0) = (X, 0) VO E Sk. 

The following results concerning PO follow from the approximation properties for 

Sk and can be found in [6] and [7]. 
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LEMMA 2. 2. 1. For-r + 2 < ? < jr-3 and max(-r + 3, j) < I < r-2, there 

is a constant C such that for all X E H'(F) 

(I - Po)qlj < Ck-q 1X11. 

2. There is a constant C such that if sl < r - 3, and X E H(F), then 

iP0oqs < Clql8. 

Having defined the spaces to be used in this paper, we can now define the discrete 

solution operators for Laplace's equation. Suppose f E H-1 (i) and g E C(F), and 

let uh E Shg solve 

(2.3) (Vuh, Vvh) =(fvh) VVh E Sho. 

Then we define Th: H-1 -+ SO by requiring Thf to solve (2.3) with g = 0 and 

Gh: C(F) -+ Shg by requiring Ghg to solve (2.3) with f 0 O. The main results of 

this section give the approximation properties of Gh and Th. 

THEOREM 2.1. 1. If Tf EHm(' ), thenfor-r+ 2<s<1< m<r, 

(2.4) || (T - Th)f 11H8 < Chm-8H JTf 1m. 

2. If GA E Hm(Q), then for 3/2 < m < r, 

(2.5) 11 (G - Gh)Ajjl < Chm- 1IGA11m. 

3. If A E Hm-1/2(1) and A, E SjB interpolates A in the sense of Blair, then for 

-r + 5/2 < s < 1 and 3/2 < m < r, 

(2.6) JIGA - GhAIllS < Chm 8HIGA1m. 

The above theorem was proved in [19]. The inverse hypothesis was used in this 

proof to prove the results for 3/2 < m < 2, and this is the only place in the present 

paper where the inverse hypothesis is used. The results for m = 3/2 are only 

needed in the proofs in the following sections when r = 4. Thus, if r > 4, all the 

results for the biharmonic problem in this paper are valid without the assumption 

of an inverse hypothesis on Sh. However, in order not to further complicate the 

statement and proof of the theorems, we will not point this out again. 

The final lemma of this section measures the difference between the finite element 

solution and the boundary data for some special data. The proof can be found in 

the appendix. 

LEMMA 2.3. Suppose Sh, Gh and Sk are as defined in this section. Further, 

suppose A, 1u E C' (2), h < 3k for some constant j, and r > 4. Then for -r + 3 < 

m < r - 3/2 and 0 < s < r - 2, the following estimate holds (with constant 

independent of A but depending on a): 

1uPOA - Gh(jUPoA)Is < C{hm+8+1/2 + h9+r-5/2km-r+3 IAI 

Remark. Note that if u = 1 and Q is polygonal, PoA = Gh(PoA). This lemma 

shows that curvature of the boundary has a reasonable effect. 
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3. The Simply Supported Plate Problem-Preliminaries. In this section 
we shall establish some estimates for the operator M defined in (1.12) and show 
that these results carry over to a finite-dimensional approximation of M. Let us 
recall the following a priori estimates. If u solves the biharmonic equation (1.1), 
then 

(3.1) IJUI14+s < c IlHfH8 + IUI,+7/2 + L'u T ( + s+3/2} 

Alternatively, 

(3.2) IJUI14+s < C {lfH1s + IUls+7/2 + l' +95/ J 
These estimates are just a priori estimates for the simply supported plate and 
clamped plate problem, respectively (cf. [21]). The first theorem of this section 
shows that the operator M is coercive. From this we can conclude that (1.11) has 
a unique solution. 

THEOREM 3.1. Let M be defined by (1.12) and suppose A E H-1/2(r). Then 
there exist positive constants C, and C2 independent of A such that for any s, 

(3.3) C1IAl-s < IMA|S < C2IA IK9. 

To prove this theorem, we first prove a lemma. 

LEMMA 3. 1. Let u E H 2() n 1o (H ) satisfy &2u = 0 in 7; then for any real 
so 

?9U < ClluI8s+3/2 < CIAUks-1. 

Proof of Lemma 3.1. If s > 0, the left-hand inequality is just the trace theorem. 
For s < 0, let X E C'(F), and define X = TGG. Then we can write 

K 
au 

> = (AU, A/) < 
IIAUIIs81/2IIAUII_8+1/2. 

The proof is completed using a priori estimates for Poisson's equation. E 
Proof of Theorem 3.1. Let u = -TGA. The right-hand inequality in (3.3) follows 

from Lemma 3.1. To prove the left-hand inequality, let X E C??(F). Define v1 to 
solve the clamped plate problem (1.1) and (1.3) with 9i = 0 and 92 = 0. Then by 
estimate (3.2), IviIIs < C1q$,-3/2 for any s. Furthermore, using Green's theorem, 

(3.4) (A, 0) = KAU, (J,) = K(, vi> 
Now define v2 to solve the simply supported plate problem (1.1) and (1.2) with 

g, = 0 and 92 = Z\v1. Clearly, v2 E H2(i), and hence using (3.4), together with 
the fact that 

(3 5) (MA, aV2) = 
9 

I0 ,V2 -r aK 2), 

which is proved in [7], we find that 

(Al a) >< 
(a, ZVi) = (MA, '9 2 
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Hence, by Lemma 3.1, (3.1) and the trace theorem, 

(Al ) < IMAI_-s ?aV < CIMAIs8Iv2I118+312 

< CIMAI-8IlvII8+3/2 < CIMAJ$0811. 

This completes the proof of the theorem. W 
Now we turn to the finite-dimensional problem (1.17). First we introduce a 

finite-dimensional analogue to M. Define the operator Mk: Sk --+Sk such that for 

Ak E Sk, MkAk e Sk is the unique solution of 

(3.6) (MkAk, Ok) = (Ak, Ok)-T(GhAk, Gh(/cqk)) Vkk E Ski 

Define the vector Fk8 E Sk to be the unique vector such that 

37(F2 
8, Ok) = T{-(Thf, Gh(0k)) + (VGh[guI, VGh(/qII)) + (gis, Iks)} 

+(92,qk) Vk ES k 

With these definitions, the solution Ak of (1.17) is just the solution of the linear 
system 

(3.8) MkAk = Fk28 

Our main theorem of this section shows that Mk is nonsingular and hence that 
(1.17) or (3.8) have a unique solution. 

THEOREM 3.2. Let r > 4 and let Gh,Th,Sh ,Sh and Sk be constructed as in 
Section 2. Suppose, in addition, that h < ck for some constant c. Then there exists 
a positive constant ko and positive constants Co and C, independent of h, k, and 

Ak E Sk such that 

(3.9) COIAkl-s < IMkkJI-8 < C1iAkI-s, 

for O < k < ko and O < s < r-5/2. 

In order to prove this theorem, we first prove a lemma. 

LEMMA 3.2. Let Sk and PO be defined as in Section 2. Then for k small 
enough, there exist positive constants Co and Ci such that for every Ok E Sk and 
O < s < r-2, 

Co|Aki|I. < IPoMAk |Is < CiA|k |-,s 

Proof of Lemma 3.2. By Theorem 3.1, we know that 

CoIAklcs - 1(1 - Po)MAk|-iI < JP0MAkJ|-. < C ATk|-s + |(I - Po)MAk|-I. 

Hence, if we can estimate 1(I - Po)MAki-c, we will be done. Let u = -TGAk. By 
the definition of M and the estimates for Po in Lemma 2.2 we obtain 

I(I-PO)MAklI, = T (I- Po)i au(A I 

aDv 1 
<CCk8+ley | <iCklAkl-l. 

Clearly, if we take k small enough, the lemma is proved. El 
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Proof of Theorem 3.2. From Lemma 3.2 we know that 

(3.10) CojAk-S - IPOMAk- MkAkI-s < jMkAkI-s 

< C jAk|-,s + IPOMAk- MkAk |-8 

To complete the proof, we must analyze IPoMAk- MkAkS-8 for s > 0 and show 
that this term may be made small. Let X E C' (F); then by (1.13) and (3.6), 

(PoMAk - MkAk, 0) 

= (MAk, PoO) - (MkAk, PoO) 
(3.11) = r[(GhAk, Gh (/Po0)) - (GAk, G(icPo0))] 

= r[((Gh - G)Ak, G(,c0)) + ((Gh - G)Ak, G(ic(Po - I))) 

+ ((Gh - G)Ak, (Gh - G)(KPoq0)) + (GAk, (Gh - G)(,cPoq0))] 

We may estimate each term in (3.11) separately. Using (2.6) and the inverse as- 
sumption on Sk, we can show that 

(3-12) ((Gh - G)Ak, G(/u/)) < C1 (Gh - G)Ak <l-8-1/2 |IG(/Cq) 11s+1/2 

(3.12) < ChA+3/2 k-8-1Ak -81k18 

where s = min(s + 1/2, r - 5/2). In the same way, using in addition Lemma (2.2), 

(3.13) ((Gh - G)Ak, G(c(Po - I)O)) < Ch3/2k-1/2 Ak Is81i1 

The remaining terms in (3.11) must be estimated separately for different s. The 
techniques are similar to those used above. First we do the case when 0 < s < 1: 

(3.14) ((Gh - G)Ak, (Gh - G)(,rPoq)) < Ch3k-2lAkl-80148, 

(3.15) (GAk, (Gh - G) (iPoO)) < Ch2k-1jAkI -81 18. 

Next we consider the case when 1 < s < r - 5/2, using arguments similar to those 
used above, and in addition (2.5): 

((Gh - G)Ak, (Gh - G)(,-Poq)) 

(3.16) = ((Gh - G)Ak, (Gh - G)(ic(Po - I)O)) + ((Gh - G)Ak, (Gh -G)()) 

< C[h3k-2+ h8+2k-8- IAkI 101 

(GAk, (Gh - G)(,cPoq)) 

(3.17) = (GAk, (Gh - G)(K (Po - I) )) + (GAk, (Gh - G)(80)) 
< C[h3/2 k-1/2 + hsk-8+1]jAkjk1k . 

Now if we combine (3.12) through (3.17) and use the definition of the negative 
norm, we obtain the estimate 

JPOMAk - MkAkl-8 

(3.18) < C[hs+3/2 k-8-1 + h3/2k-1/2 + h3k-2 

+ h8+2k-8-1 + h2k-1 + hsk8+'jlAkls 

Next we use the assumptions that h < jk and 0 < s < r - 5/2 to show that 

JPOMAk - MkAkl-8 < Ck1/2 AkI-s- 

The right-hand side can be made arbitrarily small, so combining this estimate with 
(3.10) proves the theorem. O 
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4. Estimates for the Simply Supported Plate Problem. In this section 
we shall derive error estimates for the simply supported plate problem. We shall 
assume that 

(4.1) f E H9(i), ai E Hri!2(F) a2 E Hr-5/2 (r). 

This implies W E Hr (i), which is exactly the smoothness required by the interior 
finite element methods (i.e., for Gh and Th). The first theorem is the fundamental 
result, and subsequent estimates are derived from that theorem. 

THEOREM 4.1. Suppose A is the solution of problem (1.11), and Ak solves 
problem (1.17). Suppose that Th, Gh, Sh, Sh and Sk are constructed as detailed in 
Section 2, with r > 4 and h < jk for some constant j. The following estimate holds 
for -r + 3 < s < r-5/2: 

_A-Ak I- < C{kr-5/2+s +hr-2+A +h2r-9/2k -r+3} (11f r-4+ jg11 r-1/2+1g21r-5/2)1 

where s = min(s + 1/2, r - 5/2). 

Remark. From the smoothness assumptions (4.1), A E Hr-5/2(F), and so the 
power of k in the first term in the above estimate is correct for the given smoothness. 

COROLLARY 4.2. Suppose all the hypotheses of Theorem 4.1 hold; then for 
-r + 3 < s < r - 3, 

1 A - Ak, < C{kr-5/2+s + hr-3/2+s}(Hf 1jr-4 + 191Ir-1/2 + 192Ir-5/2). 

THEOREM 4.3. Suppose all the hypotheses of Theorem 4.1 hold, and in addi- 
tion let W satisfy the biharmonic equation (1.1) with simply supported boundary 
conditions (1.2). Let Vh(Ak) be defined by (1.18); then for -r + 3 < j < 1, 

11 /\W- Vhj < C{kr-2-j + hr-2-j}( |f 1r-4 + 191|r-1/2 + 1921r-5/2). 

THEOREM 4.4. Suppose all the hypotheses of Theorem 4.1 hold, and in addi- 
tion let W satisfy the biharmonic equation (1.1) with simply supported boundary 
conditions (1.2). Let uh(Ak) be defined by (1.18); then for -r + 5 < j < 1, 

JW- Uhll < C{kr-j + hr-J}(If1j|r-4 + 191|r-1/2 + 192kr-5/2)- 

Remark. The theorems suggest that a good choice for the mesh for Sk would be 
the mesh Mh induced by Sh on F. In this case, there is a constant Ci such that 
C1k < h < ck, and our estimate for W and /\W are of optimal order in h. Here an 
inverse assumption on the interior mesh seems natural. 

To prove these theorems, and the corresponding theorems for the clamped plate 
problem, we will prove three lemmas. 

LEMMA 4.1. Suppose all the hypotheses of Theorem 4.1 hold. In addition, 
let u E C'(F) be a fixed function and let [91]I E ShB interpolate 9i in the sense 
of Blair. Then the following estimate holds for 0 < s < r - 5/2, and for every 

E C'(F) (with constant independent of q but dependent on a): 

(Tf, G(1uPoq0)) - (Thf, Gh (uPo q)) I 

+ j(VGgj, VG(1uPoq)) - (VGh[gl]IVGh(PPoq$))I 

< C{hr-3/2+s + h2r-9/2k8-r+3}(llf 11 r-4 + |1 gr-1/2)k101b- 
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Proof of Lemma 4.1. First we expand the two parts of the expression to be 
estimated: 

(Tf, G(,uPoq)) - (Thf, Gh(uPoq0)) 

(4.2) = ((T- Th)f, G(,uPoq)) + ((Th-T)f, (G- Gh)(OUPo0q)) 

+ (Tf, (G - Gh)(,uPoq0)), 

(VGg1, VG(1uPoq)) - (VGh [91II, VGh (YPPo0)) 

(4.3) = (VGgi, V(G - Gh)(,UPO )) + (V(Gg, - Gh[91]I), VG(,uPoq)) 

+ (V(Gh[91]I - Ggi), V(G - Gh)(OUPo0)). 

Next we estimate the first two terms on the right-hand side of (4.2) and the last two 
terms in (4.3). We use the estimates for Gh and Th in (2.4)-(2.6) and the inverse 
properties of PO in Lemma (2.2), and consider two cases. The first is 0 < s < r - 3: 

((T - Th)f, G(IuPob)) + ((Th- T)f, (G - Gh)(11Po 0)) 

4< II(T-Th)f 11-r+5/2 IIG(IPO?) IHr-5/2 

+ II(Th- T)f`I_jI||(G -Gh) (YPO0) II 

< Ch 2r-9/2 ks-r+3 lif li-101,91 

(V(Gg, - Gh[9l]I), VG(pUPoq)) + (V(Gh[gl]I - Ggu), V(G - Gh)(IPo 0)) 

(4.5) 
< |IGg1 - Gh[91]I11-r+9/2 |IG(1Po?b) IHr-5/2 

+ IIGh[91]II- GgjIllII(G - Gh) (YPO0) I 

< Ch 2r-9/2 k,9-r+3 1g1 Ir-1/2 1?01.9 

Next we consider the case when r - 3 < s < r - 5/2. In this case, we expand the 
terms still further by writing Poo = (Po - I)o + / and estimate terms in the same 
way as above, but now also using the accuracy properties of Po from Lemma 2.2: 

((T - Th)f, G(uPo b)) + ((Th - T)f, (G - Gh)(1UPO)) 

(4.6) = ((T - Th)f, G(,u(Po - I)q0)) + ((T - Th)f, G(/b)) 
+ ((Th - T)f, (G - Gh)(Y (PO - I)q0)) + ((Th - T)f, (G - Gh)(1q)) 

< C{hr-3/2+s + h2r-9/2ks-r+3 11f lr119 

(V(Gg, - Gh[91II), VG(uPoq)) + (V(Gh[gl]I - Ggj), V(G - Gh)(1UPoq$)) 
= (V(Gg, - Gh[g1II), VG(p(Po -I))) 

(4-7) + (V(Gg, - Gh[g1II), VG(puq)) 
+ (V(Gh[91iI- Ggu), V(G - Gh)(Y(Po -I))) 

+ (V(Gh[91uI - Ggu), V(G - Gh)(uq)) 

< C{hr-3/2+q + h2r-9/2k9-r+3 

The remaining terms in (4.2) and (4.3) must be estimated more carefully. Using 
Green's theorem and the properties of the operator T, we obtain 

(Tf, (G - Gh)(YuPO 0)) = (VT2f, V(G - Gh)(YPo 0)) 

(4.8) T2f, (G - Gh) (,Pob)), 

(4.9) (VGgu, V(G - Gh)(uPo)) - K OGg , (G - Gh)(YPoO)). 
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Now we can estimate the final term in (4.8) and (4.9), using Lemma 2.3: 

K T2 (C-G)Ioq) 

(4.10) (D R, (G-Gh)(Po 

< C{hr-3/2+s + h2r-9/2k9-r+3} Ilf 1Ir-41 01I1 

(4.11) ( &v ( -Gh)(PPo$)) 

< C{hr-3/2+s + h2r-9/2k9-r+3 } 
1l r-1/21019 

Finally, we must estimate the first term on the right-hand side of (4.8). Now we 
use the properties of G and Gh and expand the resulting term: 

(4.12) (VT2 f, V (G - Gh) (1PO q)) = -(VT2f, VGh(PPoOq)) 
= (V(T - Th)Tf, V(G - Gh)([LPo)) - (V(T - Th)Tf, VG(1uPo0)). 

If 0 < s < r - 3, we use techniques similar to those used previously in this lemma 
and obtain 

(4.13) (VT2 f, V (G - Gh) (JPoq0)) < Ch2r-9/2 k8r-+3 I1fI lir_41b0s. 

If r -3 < s < r - 5/2, we expand (4.12) still further by writing P0o = (Po - I)O + k 
and use the estimates for P0 in Lemma 2.2 to obtain 

(4.14) (VT2 f, V(G - Gh)([LPPO)) < C{hr-3/2+8 + h2r-9/2 k-r+3 lif ir1018. 

Combining (4.2), (4.4), (4.6), (4.8), (4.10), (4.12), (4.13), and (4.14) proves the first 
part of the desired estimate. The second is proved by combining (4.3), (4.5), (4.7), 

(4.9), and (4.11).0 

LEMMA 4.2. Suppose all the hypotheses of Theorem 4.1 hold. In addition, let 

/ E coo(r) be a fixed function, let 7rk be the approximation operator obeying (2.2), 
and assume h < 3k for some constant c. Then the following estimates hold for 
0 < s < r - 3, for r - 5/2 < 1 < r - 2, and for every X E C1 (r) (with constant 

independent of 0 but dependent on p): 

(Gh(lrkA), Gh(,Poq)) - (GA, G(pPo0)) < C{k1+1+8 + hr-3/2+8}IAl iA1k . 

Proof of Lemma 4.2. First we use the operator T, Green's Theorem, and the 
definition of G to expand the term to be estimated: 

(Gh (lrk A), Gh (PPo X)) - (GA, G (uPo X)) 

(4.15) = (VTGh (7rkA), VGh (uPoq5)) + (TGA , G(IiPoq$) 

aTG( h k A) , Gh(pPO)X 

Next we estimate the interior term in (4.15). We expand the term and then use 
estimates for Gh and Th in (2.4)-(2.6) together with the inverse estimate for Pn in 
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Lemma 2.2: 

(VTGh(7rkA), VGh(uPo0)) = (V(T - Th)Gh(lrkA), VGh(UPOb)) 
= (V(T - Th)(Gh - G)(7rkA - A), V(Gh - G)(uPo)) 

+ (V(T - Th)(Gh - G)A, V(Gh - G)(uPoq0)) 
+ (V(T - Th)G(lrkA - A), V(Gh - G)(,aPoq0)) 

(4.16) + (V(T - Th)GA, V(Gh - G)(,uPoq )) 

+ (V(T - Th)(Gh - G)(IrkA - A), VG(1uPoq$)) 

+ (V(T - Th)(Gh - G)A, VG(,uPoO)) 

+ (V(T - Th)G(7rkA - A), VG(pPoo)) 

+ (V(T - Th)GA, VG(1uPoO)) 
< C{kl+'+, JA~1 + h2r-9/2k8-r+3 |Ar-5/21}k11s. 

Now we estimate the boundary terms in (4.15). We start by expanding the term 
and using Lemma 2.3: 

K DTGA 
/OG(pPo) - _(TGh (lrk A) Gh (,uPO )\ 

K (TGA - Gh(IPo0)) 

-( K TGA --7rkA A), ,aP0o - Gh(iUPoO)) 

+ (a TG(A -7rkA), 1uPoq - jab + ( TG(A -7rkA), [Lb 

(4.17) + a T(Gh - G)(A - lrkA), ,1Poq0 - Gh(iUPoO)) 

+ a T(Gh - G)A,1,uPo0 - Gh (UPo0)) 

+ ( T(G - Gh)lrkA AIPof- Gh (PPo)) 

< C{kl+'+1 19JA + (hr-3/2+8 + h2r-9/2ks-r+3) JA1r}5/2}1k1 

+ | T(G-Gh)7rkA,,aP0| 

It remains to estimate the last term in (4.17). Let A, E ShB interpolate A in the 
sense of Blair. Then using (2.6), we obtain 

(T(G - Gh)lrkA, IPob 

(4.18) < 
- 

(< T(G-Gh)(7rkA - AI),IpPob 

+ KaTG(I - A)) ,IPoo) + T(GA -Gh>I)jaP00 

< C{kl+'+-91jAI + h8+r-3/2 JAlr-5/21}k1b. 

Combining (4.15) through (4.18) proves the lemma. D 



A FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION 467 

LEMMA 4.3. Suppose Th and Gh are constructed as detailed in Section 2. Let 

(uv) be defined by (1.8) and (Uh, Vh) be defined by (1.18). Then the following 
estimates hold for -r + 5/2 < j < 1 and r - 5/2 < 1 < r -2: 

liV - Vhllj < C {hI+1/2-j(llfll1-3/2 + JA11) 

+ h3/2-jk1-1'ljl + h3/2-3lA - 
Akil + IA - Ak-13l/2} 

I|U - Uhllj < C {hrj (11f1r-4 + 191Ir-1/2 + lAlr-5/2) 

+ h2j iV-VhllO + liV-Vhllj-2}. 

Proof of Lemma 4.3. These results follow in a straightforward way from the 
definitions of (u, v) and (Uh, Vh) by using the estimates (2.4)-(2.6). We will prove 
only the first estimate. Let A, E ShB interpolate A in the sense of Blair; then from 
the definitions of v and Vh, 

liV - VhIJ < ? l(T - Th)f llj + |IGA - GhAk ||j 

< ll(T - Th)f lIj + IIGA - GhAI |j 

+ ll(G - Gh)(AI - Ak) Ij + IIG(AI - Ak)lij 

< C{h1+1/2-3(ITf 111+1/2 + IIGAII1+l/2) 

+ h3/2-j |AI - Akll + AIi - Aklj1/21} 

Application of the approximation properties of the Blair interpolant from Lemma 
2.1 and the a priori estimates for T and G completes the proof. The second estimate 
is proved in the same way. D 

Proof of Theorem 4.1. Let 7rk be the operator obeying estimate (2.2); then, using 
Theorem 3.2, 

IA - Akl-s < IA - rkl8 + lwkA - Akl- 

(4.19) < Ckr-5/2+l Alr-5/2 + CIMk(7rkA - Ak)l-, 

< Ckr-5/2+l Alr15/2 

+ C(lMk (7rk) - PoMA I + IPoMA - MkAk l-s) 

We now estimate the last two terms in (4.19). Let q E C' (F); using (1.12) and 
(3.6) and the equations satisfied by A (1.11) and Ak (1.17), we find that the last 
term in (4.19) can be estimated as follows: 

(PoMA - MkAk, 0) = (MA, Poq) - (MkAk, POO) 

(4.20) = T {-(Tf, G(,cPoq0)) + (VGgi, VG(KPoq)) 

+ (Thf, Gh (IPoq)) - (VGh [91]I, VGh (sPoq))} 

This is estimated using Lemma 4.1 with ,u = Kc. To estimate the remaining term in 
(4.19), we use the properties of M (1.13) and Mk (3.6) to write 

(4.21) (Mk (wrkA) - Po MA, A) = (Mk (lrk A), Po A) - (MA, oP 0) 

= (lRkA - A, Poq0) + T{ (GA, G(KPoq$)) - (Gh (rkA), Gh (KPoX))} 

This can be estimated by Lemma 4.2 with pu = Kc and 1 = - 5/2. The combination 
of (4.21), (4.20), and (4.19) proves the theorem for s > 0. For s < 0 the result 
follows from the estimate for s = 0 using the inverse property of Sk. D 
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Proof of Theorems 4.3 and 4.4. By Lemma 4.3, we may estimate v - Vh and 
u - Uh in terms of estimates for A - Ak, and we use Theorem 4.1 to estimate the 
terms in A-Ak E 

5. The Clamped Plate Problem-Preliminaries. In this section we shall 
analyze the finite-dimensional clamped plate problem (1.19) in a way similar to the 
analysis of the simply supported plate problem in Section 3. First, we shall derive a 
priori estimates for the operator A defined by (1.15); then we derive similar results 
for a finite-dimensional approximation to A. 

THEOREM 5. 1. Suppose A E H-1/2(F). Then there exist positive constants Co 
and Ci independent of u such that for all s, 

C01AI-8-1 < |AA|_s < C1|A|_s-l. 

Proof of Theorem 5.1. The right-hand side follows from Lemma 3.1. To prove 
the left-hand inequality, let u = -TGA, take X E C' (F), and define v to be the 
solution of the clamped plate problem (1.1) and (1.3) with ai = 0 and 92 = X 

Then, using (3.4), (3.5) and the a priori estimate (3.2), we can show that 

(A =( V, < C 1 k8+1 = CIAAI8I9q$18+1 \Ov / - V -s9 

This, together with the definition of the negative norm, completes the proof. E 
Now let us define the operator Ak: Sk -+ Sk. Given Ak E Sk, AkAk satisfies 

(5.1) (AkAk, ik) = (GhAk, Gh k) V~k E Sk 

Also define the finite-dimensional data Fk, E Sk to satisfy 

(5.2) (Fki, Okk) = (Thf, GhOk )- (VGh[g1]I, VGh k) + (92, 00k) V~k E Sk. 

With these definitions, the solution Ak of the finite-dimensional clamped plate prob- 
lem (1.19) is just the solution of the linear system 

(5.3) AkAk = Fk,- 

Note that Ak is related to the operator Ah appearing in [15]. The main theorem 
of this section states that under certain conditions on Sh and Sk,Ak is positive 
definite. Hence the finite-dimensional problem (5.3) has a unique solution. 

THEOREM 5.2. Suppose r > 4 and Gh, Th, Sh, Sh and Sk are constructed as in 
Section 2. Then, if h < 5k for some positive ? small enough, there exist positive 
constants Co and Ci independent of h, k and Ak such that for 0 < s < r - 3, 

ColAkIl--1 < |AkAkI-8 < ClIAkI-s-1 VAk E Sk- 

In order to prove this theorem, we shall use the following lemma from [7]. 

LEMMA 5. 1. For u E H2(F), define E(u, u) E R by 

E(u, u) = (A\u, Zu) - (uxlxl UX2,X2) + (UXlX2, UXlX2). 

1. For every u E H2 (Q), 

Z IIDauII1 < 2E(u, u). 
IaI=2 
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2. If u satisfies /\u = 0 in Q and u = 0 on F, then 

/ 1 au au\ 
E(u,u) =KAu- /c- ,) . 

We also need a lemma analogous to Lemma 3.2. 

LEMMA 5. 2. Let Sk and PO be as defined in Section 2; then there exist positive 
constants Co and Ci independent of k and Ak such that for 0 < s < r - 2, 

CoIAkI-s-1 < IPoAAkI-,s < C1IAkI-s-1. 

Proof of Lemma 5.2. Let u = -TGAk. By Theorem 5.1, 

(5.4) CoIAk|--1-j (I-Po)AAkI-s < |P0AAk |-, < ClIAkI-s-1+I(I-Po)AAkI-s. 

It remains to estimate I(I - Po)AAkIS. Using Lemma 2.2 and (3.2), 

(I -Po)AAkIS- < Ck9+1/2 11u112 

- Cks+l/2 { I IIDauII + iiUIi2l}1 

(5.5) l Iel=2) 

< Ck9+ 1/2 (E Dau112 +IAk1/2}) 
IaI=2 

However, by Lemma 5.1, 

S IIDauII1 < 2E(u, u) = 2 (/\u -2'1Dv Dv/ 
IaI=2 

(5.6) < C IIAkoIPoAAAkjo u 2 

<C {k 21kI-s-lIOA~kI-s + - }1 

Combining (5.6) and (5.5), and using Lemma 3.1, we obtain 

(I -PO)AAkI-s < CIAkI-s-lIPoAAkI-s + CkIAk|__1. 

Hence, for any 6 > 0, 

1(I - Po)AAk|_ < C(k + 6) |Ak I-,1 + ,IPoAAkI2 -. 

Taking 6 and k small enough, and using this estimate in (5.4), proves the left-hand 
inequality in the lemma. Taking 6 large enough proves the right-hand inequal- 
ity. O 

Proof of Theorem 5.2. Using Lemma 5.2, 

COI>k|1 - IPoAk -AkAkl-s < |Akk| < IAkAks < C1I k1A1 + IPoAAk - AkAkIs 
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We must estimate IPoAAk-AkAk I-; so, letting X E C??(F), using (1.16) and (5.1), 
then using (2.6) and Lemma 2.2, we find that 

(PoAAk- AkAk, q) = (AAk, Poq) - (AkAk, POO) 
= (GAk, G(PoO)) - (GhAk, Gh(PoO)) 

= ((Gh - G)Ak, G(Poq - 0)) + ((G - Gh)Ak, GO) 

+ ((Gh- G)Ak, (Gh- G)(Poq$)) + (GAk, (G - Gh)(Poq)) 
< C(h2k-2 + h9+2 k- 9-2) lAki-9 1X19 

+ ((Gh - G)Ak, (Gh - G)(PO0)) + (GAk, (G - Gh)(POO)). 
The remaining terms in (5.7) must be estimated in two cases depending on s. The 
first case is 0 < s < 1: 

((Gh- G)Ak, (Gh- G)(Poq)) < Ch3k-3IAk1s..10Is, 
(5.8) (GAk, (G - Gh)(Poq)) < Ch3/2k-3/2lAkIs.lI 101, 

The second case is 1 < s: 

((Gh - G)Ak, (Gh - G)(Poq0)) = ((Gh - G)Ak, (Gh - G)(Poq - 0)) 
+ ((Gh - G)Ak, (Gh - G)q) 

< C(h3k-3 + hs+2k-8-2) IAkI.--1 1k1kI 

(GAk, (G - Gh)(PO)) = (GAk, (G - Gh) (Po - 0)) + (GAk, (G - Gh)q) 
< C(h3/2k-3/2 + hs-1/2k-8+1/2) A 1 101 

Combining (5.7), (5.8), and (5.9), and using h < 5k, we obtain 

IPoAAk- AkAkI-8 < Cj1/1 IAkI-s-1- 

Hence, using this estimate with ? small enough proves the result. E 
The next lemma will be of use in Section 7. 

LEMMA 5.3. Suppose Ak is defined by (5.1) and Gh is constructed as in Section 
2. Then, if h < 5k, with ? small enough, there exist positive constants Co and Ci 
such that 

COJAk - 1/2- <(kk, Ak) < CllAkl-1/2 VkES 

To prove this lemma, we recall the following lemma which may be found in [15]. 

LEMMA 5.4. There exist positive constants Co and Ci independent of A, such 
that for every A E H-1/2(r) 

0||- 1/2 < (AA, A) < C, JA-1/2' 

Proof of Lemma 5.3. By Lemma 5.4, we know that 

COIAkI-1/2 -(A~k-AkAk,Ak) < (AkAk,Ak) < C1IAkI-1/2 + (A~k-AkAkAk). 

It remains to estimate (AAk- AkAk, Ak), using methods similar to those used to 
prove Theorem 5.2: 

(AAk- AkAk, Ak) = (GAk, GAk)- (GhAk, GhAk) 

- 2((G - Gh)Ak, GAk) + ((Gh- G)Ak, (G - Gh)Ak) 

< C(h3/2k3/2 + k3k3)lAkIl-/2 < C k3/2IAk-1/2. 

Taking ? small enough and combining the above estimates proves the lemma. D 
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6. Estimates for the Clamped Plate Problem. In this section we shall 
assume the following smoothness for the data: 

(6.1) f E Hr-7/2(C) g C Hr(r), 92 E Hr-2(r). 

This is more smoothness than is needed for the interior finite element problems 
alone. However, from Theorem 5.2 we must take h < 5k for some sufficiently small 
5, and so wish to take k as large as possible. The extra smoothness helps this 
slightly. Our main error estimate is contained in Theorem 6.1, and the remaining 
estimates follow from that result. 

THEOREM 6.1. Suppose r > 4 and Gh, Th, Sh, So and Sk are constructed as 
detailed in Section 2. Let A solve (1.14), and let Ak E Sk solve (1.19). Then, if 
h < ?k, with 5 small enough, the following estimate holds for -r + 2 < s < r -3: 

IA - AkI2s1 < C{kr-l+s + hr-3/2+,j}(IjfIr-7/2 + 19glr + 192Ir-2). 

THEOREM 6.2. Suppose all the hypotheses of Theorem 6.1 are satisfied. Let W 
solve the biharmonic problem (1.1) with clamped plate boundary conditions (1.3), 
and let Vh(Ak) be defined by (1.18); then the following estimate holds for -r+5/2 < 
j < 1: 

11 - -W Vh| < C{kr-3/2-j + hr-2 J}(IfII-7/2 + 19 Jr + 192Ir-2)- 

THEOREM 6.3. Let all the hypotheses of Theorems 6.1 and 6.2 hold, and let 
uh(Ak) be defined by (1.18). Then, for -r + 9/2 < I < 1, the following estimate 
holds: 

11W - Uhlll < C{kr+1/2-1 + hr-}(WIfIr.r-7/2 + I91Jr + 192Ir-2). 

Remarks. Consider the case 1 = 1 in Theorem 6.3. Then 

jjW - uhIJl < C{kr-1/2 + hr-1}(I1 fIr-7/2 + 191Jr + 192Ir-2) 

We may balance terms in the estimate by taking k = h(r-l)/(r-1/2). Obviously, 

one can satisfy this equality at least approximately with compatible meshes. This 

choice of h and k has the additional advantage that for any fixed 5, h < 5k if k is 

small enough. 

The proofs of the preceding theorems, which we outline next, use the lemmas 

from Section 4. 

Proof of Theorem 6.1. We use Theorem 5.2: 

IA - Akl-9-1 < IA - WkAIs1 + I7kA - Akj-8-1 

? C(k r'1+sIAr-2 + |Ak(lkA - Ak)I-8) 

? C(kr-1+sJAJr 2 + IAklrkA - PoAAK- + IPoAA - AkAk-s). 

It remains to estimate the two final terms in the above expression. Let qb C C??(r); 

then 

(AkrkA - PoAA, ) = (Gh(rkk), Gh(Poq)) + (GA, Gh(Poq)), 
(PoAA - AkAk q$) = (Tf, G(Pob)) - (VGgi, VG(Poq)) 

- (Th f Gh (Poq)) + (VGhM[glJI, VGh (Poq)) 
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The right-hand side of these expressions is estimated using Lemmas 4.1 and 4.2 
with ,u = 1 and I = r - 2. This completes the proof of Theorem 6.1 for s > 0, and 
the result for s < 0 follows by the inverse property of Sk. LI 

Proof of Theorems 6.2 and 6.3. These follow from Theorem 6.1 by applying 
Lemma 4.3. L 

7. Implementation of the Algorithms. In this section we shall discuss how 
to implement (1.17) and (1.19), using the conjugate gradient algorithm. 

7.1. The Simply Supported Plate Problem. To solve the simply supported plate 
problem, we seek to compute Ak e Sk which satisfies the linear equation (3.8). 
Once we have chosen a basis for Sk, (3.8) is a matrix problem. Unfortunately, the 
matrix Mk is not symmetric, so we must solve instead 

(7.1) MkTMkAk = MkTFkSS . 

A more detailed examination of (3.6) shows that the matrix representing Mk is 
costly to compute, since to find the matrix, we must solve many Dirichlet problems 
for Laplace's equation. Fortunately, if we solve (7.1) using the conjugate gradient 
algorithm, we can avoid computing the matrix for Mk and need only compute its 
action on vectors in Sk. To make the action of Mk cheaper to compute, we use the 
following result. 

LEMMA 7. 1. Let Gh and Th be constructed via Scott's method. Given 'y E 
Co(r) and any function X E Sk, define Ph(-Yq) to be the function in Sh that 
interpolates -yo at interpolation points on r and which interpolates zero at points 
in the interior of Q. Then the following equality holds for all X E Sk: 

(GhAk, Gh(eYlk)) = (GhAk, IhQ(Ik)) - (VThGhAk, Vth(Yk)). 

Remark. Note that the left-hand side in the above equality involves integration 
only over elements along F. 

Proof of Lemma 7.1. Taking Ph as defined above, 

(GhAk, Ghb(ark)) = (GhAk, Gh(aOk) - [lh(yq) ) + (GhAk, [h (Y0)). 

Note that Gh(yk) - Ph ('-y) E Sho; hence, using the properties of Th, we obtain 

(GhAk, Gh (-k)) = (7Th GhAk, V (Gh (aYk) - Ih(W5)))) + (GhAk, IhQ(7Y)). 

Using the definition of Gh and the fact that ThGhAk E Sh? completes the 
proof. O 

Lemma 7.1 can be applied to compute the action of Mk on any function in Sk by 
solving only two discrete Dirichlet problems for Poisson's equation. Similar results 
also hold for MkT. This makes the solution of (7.1) by conjugate gradients feasible, 
provided (7.1) does not become badly conditioned as h and k decrease. However, 
by Theorem 3.2, 

COIAk12 < (MkTMkAkAk) < ClA|k12 

Thus, provided the hypotheses of Theorem 3.2 are satisfied, we know MkTMk has 
a condition number bounded independent of h or k. Hence, we may solve (7.1) to 
accuracy 0(k2r) in O(ln(1/k)) iterations of the conjugate gradient algorithm (cf. 
[2]). Each iteration of the algorithm requires the solution of four discrete Dirichlet 
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problems. Numerical results for this algorithm for the simply supported plate 
problem can be found in [20]. 

7.2. The Clamped Plate Problem. Now let us turn to solving the clamped plate 
problem (5.3). In this case, the matrix involved is Ak, which is symmetric. As in 
the case of Mk, Ak is costly to compute, but we can use Lemma 7.1 to compute 
the action of Ak by solving only two Dirichlet problems for Poisson's equation. Un- 
fortunately, Lemma 5.3 shows that the spectral condition number of Ak is O(k-1) 
and hence increases without bound as k decreases to zero. This ill-conditioning will 
adversely affect the convergence properties of iterative methods applied to (5.3), so 
we must precondition the problem. We consider two possible preconditioners. 

Let the discrete surface Laplacian lk: Sk -+ Sk be defined so that if X E Sk then 

(10q, 0) = (O, 0) + (q$, 0') V0 E Sk, 

where prime denotes derivative with respect to arc length. ik is estimated in the 
following lemma (cf. [6]). 

LEMMA 7.2. If Sk C H1(J), then for IsI < 1 there are positive constants Co 
and Ci such that 

Co01$18 < ?1k/20| < C110's V0 E Sk. 

The use of a fractional power of lk to precondition the clamped plate problem is 
suggested in [15], and our analysis follows Bramble [6]. Using Lemmas 5.3 and 7.2, 
we find that 

CO IcI ? 1 2< (l14Akl14 Ok ,aOk) < Ci IaOjk V2 V e Sic. 

Hence, if we solve 

(7.2) 11/ Ak 1/ Ok = 11/ Fc 

we know that the matrix involved is symmetric and has a bounded condition number 
as k decreases. Thus we can use the conjugate gradient algorithm on (7.2) and must 
compute l /2AkO for various X E Sk. This preconditioned problem is useful when 
1k1/2 can be computed rapidly, for instance if Sk consists of smooth splines on a 
uniform mesh (cf. [6] and [15] for more discussion on this case). 

If 11/2 is difficult to compute, we must use a different preconditioned system. 
From Theorem 5.2 and Lemma 7.2 we obtain 

Co01ka12 < (1 A/ 2A1/2 Ok,Ork) < Cidork1 Vaik E Sk- 

Hence the matrix lk/2AAl'/2 is symmetric, positive definite and has a bounded 
condition number as k decreases to zero. We can thus use the conjugate gradient 
algorithm on the system 

/2 A2/2 Ork = 1/2 AkFkC k k k k = k 

in an efficient way. In applying the iterative method to this system, we must be 
able to compute lkA2qOk for Ok E Sk. We can easily compute A2qOk via Lemma 7.1, 
and the action of ik only involves inverting the stiffness matrix for Sk. 
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A. Appendix. 
Proof of Lemma 2.3. Essentially, Lemma 2.3 is an extension of a result in [22], 

and the proof we give below makes use of many results in that paper. We let <h 
be a boundary element and use the notation of Section 2 (see Figure 1). We start 
with a slight extension of a lemma in [22]. We first prove that for 0 < s <r - 2, 

( (iPoA - Gh (uPoA))b 
(A. .1) z~ 

< Cxr~sO 112 I0IsW { IP0Alr-,oo,rTh + IIGh(IPOA)IIr-1,XOOh }h 

This is proved by taking / to be a polynomial of degree s - 1 (b = 0 if s = 1) such 
that 

8 do du 
j dz j,[Oxo] '|dx [oX0] 

where a is arc length on arih. Hence, 

j(,PoA - Gh(bPoA))> 
Th 

(A.2) < J| ((,aPoA)(a(x)) - Gh(1aPoA)(x, p(x)))4V 

+ C l 1ksarh j ; (yPo A (a (x)) - Gh (,UPO A) (X, P(X))) 

To estimate the first term in (A.2), we recall the error estimates for Lobatto quadra- 
ture (cf. [12] and [23]). Then, using the fact that PO0X and Gh(Poq0) are polynomials, 
we obtain the following: 

(A.3) f ((PoA) (a(x)) - Gh (uPoA) (x, p(x)))fb 

< Cx T3/2I sThf{IP0oAr-ioaTh + IIGh(IIPoA)IIr- Xloo,}h 

where T< is the circumscribed circle for this element. To estimate the second term 
in (A.2), we use standard one-dimensional interpolation theory: 

sup I[PoA - Gh(pPoA)I 
< 

CXr{IPOAI r loojrh + IIGh(IPoA)II-lfOO,? }h XE[O.xo] 
0 toar 

- 

Combining the above estimate and (A.3) in (A.2) proves (A.1). Now we estimate 
terms on the right-hand side of (A.1). We start with the term in Gh(,uPoA) when 
r - 3 < m < r - 3/2. Let [G(,uPoA)]1 E Sh be the interpolant of G(pPoA); then by 
the regularity of the mesh and using standard bounds on norms of the interpolant 
(see [22]), 

||Gh (iPoA) lIr- 1,OOTh 

< CX-r{II(Gh - G)(U(Po - I)A)IIl ,rh + II (Gh -G)(pA)1ll Th 

(A.4) + IIG(,u(Po - I)A) - [G(1(Po -I)A)]Il l,,h 

+ IIG(puA- [G(pA)]I 11,rh } 

+ CxO jjG(,a(I - PO)A)IIr-5/2 ,rh + CXO IIG(tA)IIm+112,rh. 
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For m < r - 3 we must adopt a slightly different strategy. Again using the inter- 
polant and the regularity of the mesh, 

||Gh (/iPoA) lr- 1,00?fh 

(A.5) ? CxO r~ {IIC(Gh - G) (1PoA) II 1,_h + IIG(iPoA) - [G(pPoA)]II 1 l,Th } 

+ Cx- /|IIG(pPoA)IIr-5/2,Th. 

Now we turn to the first term on the right-hand side of (A.1). For m < r - 3, we 
use the regularity of the mesh to write 

(A.6) |o r-,oh < CX-r I~m+1m2 h 

For r - 3 < m < r - 3/2, we let AI E ShB interpolate A in the Lagrange sense and 
obtain the following: 

OP0Ar-1,oo,,9rh 

? IPoA' AI-r-jrloorTh + lAilr-1,oo,09Th 

(A.7) < C{x-7/2lPoA - Alr3 h + X72 - AI Irh3,& 

+ xm-r+1/2 IAIImah} 

C? X-7/2 I -A | AI3,h + X /2 JAIMh 
Using (A.5) and (A.6) in (A.1), summing over boundary elements, and using the 
approximation properties of Po, Gh and the interpolant and inverse properties of 
Sk proves the lemma when m < r - 3. In the same way, using (A.4) and (A.7) in 
(A.1) proves the result when m > r - 3.0 
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